A generalized action for $(2+1)$-dimensional Chern–Simons gravity

José Díaz,1* Octavio Fierro,2† Fernando Izaurieta,3,4‡ Nelson Merino,2,4,5§
Eduardo Rodríguez,3,4¶ Patricio Salgado,2,5,6** and Omar Valdivia1,2,7††

1Departamento de Física y Matemáticas,
Universidad Arturo Prat, Casilla 121, Iquique, Chile
2Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción, Chile
3Departamento de Matemática y Física Aplicadas, Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, 4090541 Concepción, Chile
4Dipartimento di Fisica, Politecnico di Torino,
C.so Duca degli Abruzzi, 24, I-10129 Torino, Italy

(Dated: June 7, 2012)

Abstract

We show that the so-called semi-simple extended Poincaré (SSEP) algebra in D dimensions can be obtained from the anti-de Sitter algebra $so(D-1,2)$ by means of the S-expansion procedure with an appropriate semigroup S. A general prescription is given for computing Casimir operators for S-expanded algebras, and the method is exemplified for the SSEP algebra. The S-expansion method also allows us to extract the corresponding invariant tensor for the SSEP algebra, which is a key ingredient in the construction of a generalized action for Chern–Simons gravity in $2+1$ dimensions.

*jose.diaz.polanco@uan.cl
† ofierro@udec.cl
‡ fizaurie@ucsc.cl
§ nemerino@udec.cl
¶ edurodriguez@ucsc.cl
** pasalgad@udec.cl
†† ovaldivi@udec.cl
1. INTRODUCTION

In Refs. [1–4], the Poincaré algebra of rotations J_{ab} and translations P_a in D-dimensional spacetime has been extended by the inclusion of the second-rank tensor generator Z_{ab} in the following way:

\[[J_{ab}, J_{cd}] = \eta_{ad} J_{bc} + \eta_{bc} J_{ad} - \eta_{ac} J_{bd} - \eta_{bd} J_{ac}, \]
(1)

\[[J_{ab}, P_c] = \eta_{bc} P_a - \eta_{ac} P_b, \]
(2)

\[[P_a, P_b] = c Z_{ab}, \]
(3)

\[[J_{ab}, Z_{cd}] = \eta_{ad} Z_{bc} + \eta_{bc} Z_{ad} - \eta_{ac} Z_{bd} - \eta_{bd} Z_{ac}, \]
(4)

\[[Z_{ab}, P_c] = \frac{4a^2}{c} \left(\eta_{bc} P_a - \eta_{ac} P_b \right), \]
(5)

\[[Z_{ab}, Z_{cd}] = \frac{4a^2}{c} \left[\eta_{ad} Z_{bc} + \eta_{bc} Z_{ad} - \eta_{ac} Z_{bd} - \eta_{bd} Z_{ac} \right], \]
(6)

where a and c are constants. It is remarkable that the Lie algebra (1)–(6) is semi-simple, in contrast to the Poincaré and extended Poincaré algebras [cf. eqs. (1.1) and (1.2) of Ref. [3]]. Note that, in the $a \to 0$ limit, the algebra (1)–(6) reduces to the algebra in eq. (1.2) of Ref. [3]. The semi-simple extended Poincaré (SSEP) algebra (1)–(6) can be rewritten in the form

\[[N_{ab}, N_{cd}] = \eta_{ad} N_{bc} + \eta_{bc} N_{ad} - \eta_{ac} N_{bd} - \eta_{bd} N_{ac}, \]
(7)

\[[L_{AB}, L_{CD}] = \eta_{AD} N_{BC} + \eta_{BC} N_{AD} - \eta_{AC} N_{BD} - \eta_{BD} N_{AC}, \]
(8)

\[[N_{ab}, L_{CD}] = 0, \]
(9)

where the metric tensor η_{AB} is given by

\[\eta_{AB} = \begin{bmatrix} \eta_{ab} & 0 \\ 0 & -1 \end{bmatrix}, \]
(10)

and the N_{ab} generators read

\[N_{ab} = J_{ab} - \frac{c}{4a^2} Z_{ab}. \]
(11)

The N_{ab} generators form a basis for the Lorentz algebra $\mathfrak{so}(D - 1, 1)$. The L_{AB} generators, on the other hand, are given by

\[L_{AB} = \begin{bmatrix} L_{ab} & L_{a,D} \\ L_{D,a} & L_{D,D} \end{bmatrix} = \begin{bmatrix} \frac{c}{4a^2} Z_{ab} & \frac{1}{2a} P_a \\ -\frac{1}{2a} P_a & 0 \end{bmatrix}. \]
(12)