• Login
    View Item 
    •   DSpace Home
    • A) Producción científica UCSC
    • Artículos Científicos
    • View Item
    •   DSpace Home
    • A) Producción científica UCSC
    • Artículos Científicos
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Habitat formation prevails over predation in influencing fouling communities

    Thumbnail
    View/Open
    Jean-Charles Leclerc, Frédérique Viard (Habitat...).pdf (212.5Kb)
    Date
    2018-01
    Author
    Leclerc, Jean-Charles
    Viard, Frédérique
    Publisher
    Wiley
    Description
    Artículo de publicación ISI
    Metadata
    Show full item record
    Abstract
    Coastal human‐made structures, such as marinas and harbors, are expanding worldwide. Species assemblages described from these artificial habitats are novel relative to natural reefs, particularly in terms of the abundance of nonindigenous species (NIS). Although these fouling assemblages are clearly distinctive, the ecosystem functioning and species interactions taking place there are little understood. For instance, large predators may influence the fouling community development either directly (feeding on sessile fauna) or indirectly (feeding on small predators associated with these assemblages). In addition, by providing refuges, habitat complexity may modify the outcome of species interactions and the extent of biotic resistance (e.g., by increasing the abundance of niche‐specific competitors and predators of NIS). Using experimental settlement panels deployed in the field for 2.5 months, we tested the influence of predation (i.e., caging experiment), artificial structural complexity (i.e., mimics of turf‐forming species), and their interactions (i.e., refuge effects) on the development of sessile and mobile fauna in two marinas. In addition, we tested the role of biotic complexity—arising from the habitat‐forming species that grew on the panels during the trial—on the richness and abundance of mobile fauna. The effect of predation and artificial habitat complexity was negligible, regardless of assemblage status (i.e., native, cryptogenic, and nonindigenous). Conversely, habitat‐forming species and associated epibionts, responsible for biotic complexity, had a significant effect on mobile invertebrates (richness, abundance, and community structure). In particular, the richness and abundance of mobile NIS were positively affected by biotic complexity, with site‐dependent relationships. Altogether, our results indicate that biotic complexity prevails over artificial habitat complexity in determining the distribution of mobile species under low predation pressure. Facilitation of native and non‐native species thus seems to act upon diversity and community development: This process deserves further consideration in models of biotic resistance to invasion in urban marine habitats.
    URI
    http://repositoriodigital.ucsc.cl/handle/25022009/1465
    Ir a texto completo en URI:
    https://doi.org/10.1002/ece3.3654
    Collections
    • Artículos Científicos

    UCSC
    UCSC | Contact Us | Send Feedback
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    UCSC
    UCSC | Contact Us | Send Feedback