• Login
    View Item 
    •   DSpace Home
    • A) Producción científica UCSC
    • Artículos Científicos
    • View Item
    •   DSpace Home
    • A) Producción científica UCSC
    • Artículos Científicos
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reliability and concurrent validity of the Velowin optoelectronic system to measure movement velocity during the free-weight back squat

    Thumbnail
    View/Open
    García, Pérez, Martín (Reliability ...).pdf (205.0Kb)
    Date
    2018-10
    Author
    García-Ramos, Amador
    Pérez-Castilla, Alejandro
    Martín, Fernando
    Publisher
    SAGE
    Description
    Artículo de publicación ISI
    Metadata
    Show full item record
    Abstract
    The objective of this study was to explore the reliability and concurrent validity of the Velowin optoelectronic system to measure movement velocity during the free-weight back squat exercise. Thirty-one men (age = 27.5 ± 3.2 years; body height = 1.76 ± 0.15 m; body mass: 78.3 ± 7.6 kg) were evaluated in a single session against five different loads (20, 40, 50, 60 and 70 kg) and three velocity variables (mean velocity, mean propulsive velocity and maximum velocity) were recorded simultaneously by a linear velocity transducer (T-Force; gold-standard) and a camera-based optoelectronic system (Velowin). The main findings revealed that (1) the three velocity variables were determined with a high and comparable reliability by both the T-Force and Velowin systems (median coefficient of variation of the five loads: T-Force: mean velocity = 4.25%, mean propulsive velocity = 4.49% and maximum velocity = 3.45%; Velowin: mean velocity = 4.29%, mean propulsive velocity = 4.60% and maximum velocity = 4.44%), (2) the maximum velocity was the most reliable variable when obtained by the T-force (p < 0.05), but no significant differences in the reliability of the variables were observed for the Velowin (p > 0.05) and (3) high correlations were observed for the values of mean velocity (r = 0.976), mean propulsive velocity (r = 0.965) and maximum velocity (r = 0.977) between the T-Force and Velowin systems. Collectively, these results support the Velowin as a reliable and valid system for the measurement of movement velocity during the free-weight back squat exercise.
    URI
    http://repositoriodigital.ucsc.cl/handle/25022009/1815
    Ir a texto completo en URI:
    https://doi.org/10.1177/1747954118791525
    Collections
    • Artículos Científicos

    UCSC
    UCSC | Contact Us | Send Feedback
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    UCSC
    UCSC | Contact Us | Send Feedback