• Login
    View Item 
    •   DSpace Home
    • A) Producción científica UCSC
    • Artículos Científicos
    • View Item
    •   DSpace Home
    • A) Producción científica UCSC
    • Artículos Científicos
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Error analysis of an augmented mixed method for the Navier–Stokes problem with mixed boundary conditions

    Thumbnail
    View/Open
    Camaño, Oyarzúa, Ruiz, Tierra (Error analysis...).pdf (3.099Mb)
    Date
    2018-07
    Author
    Camaño Valenzuela, Jessika
    Oyarzúa, Ricardo
    Ruiz-Baier, Ricardo
    Tierra, Giordano
    Publisher
    Oxford University Press
    Description
    Artículo de publicación ISI
    Metadata
    Show full item record
    Abstract
    In this article, we analyse an augmented mixed finite element method for the steady Navier–Stokes equations. More precisely, we extend the recent results from Camaño et al.. (2017, Analysis of an augmented mixed-FEM for the Navier–Stokes problem. Math. Comput., 86, 589–615) to the case of mixed no-slip and traction boundary conditions in different parts of the boundary, and introduce and analyse a new pseudostress–velocity-augmented mixed formulation for the fluid flow problem. The well-posedness analysis is carried out by combining the classical Babuška–Brezzi theory and Banach’s fixed-point theorem. A proper adaptation of the arguments exploited in the continuous analysis allows us to state suitable hypotheses on the finite element subspaces ensuring that the associated Galerkin scheme is well defined. For instance, Raviart–Thomas elements of order k≥0 k≥0 and continuous piecewise polynomials of degree k+1 k+1 for the nonlinear pseudostress tensor and velocity, respectively, yield optimal convergence rates. In addition, we derive a reliable and efficient residual-based a posteriori error estimator for the proposed discretization. The proof of reliability hinges on the global inf–sup condition and the local approximation properties of the Clément interpolant, whereas the efficiency of the estimator follows from inverse inequalities and localization via edge–bubble functions. A set of numerical results exemplifies the performance of the augmented method with mixed boundary conditions. The tests also confirm the reliability and efficiency of the estimator, and show the performance of the associated adaptive algorithm.
    URI
    http://repositoriodigital.ucsc.cl/handle/25022009/1861
    Ir a texto completo en URI:
    https://doi.org/10.1093/imanum/drx039
    Collections
    • Artículos Científicos

    UCSC
    UCSC | Contact Us | Send Feedback
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    UCSC
    UCSC | Contact Us | Send Feedback