• Login
    View Item 
    •   DSpace Home
    • A) Producción científica UCSC
    • Artículos Científicos
    • View Item
    •   DSpace Home
    • A) Producción científica UCSC
    • Artículos Científicos
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On stabilization of Maxwell-BMS algebra

    Thumbnail
    View/Open
    On stabilization of Maxwell-BMS algebra.pdf (466.6Kb)
    Date
    2020-04-14
    Author
    Concha Aguilera, Patrick
    Safari, H. R.
    Publisher
    Springer
    Description
    Artículo de publicación ISI
    Metadata
    Show full item record
    Abstract
    In this work we present different infinite dimensional algebras which appear as deformations of the asymptotic symmetry of the three-dimensional Chern-Simons gravity for the Maxwell algebra. We study rigidity and stability of the infinite dimensional enhancement of the Maxwell algebra. In particular, we show that three copies of the Witt algebra and the bms3⊕witt algebra are obtained by deforming its ideal part. New family of infinite dimensional algebras are obtained by considering deformations of the other commutators which we have denoted as M (a, b; c, d) and M¯(α¯,β¯;ν¯). Interestingly, for the specific values a = c = d = 0,b = − 1/2 the obtained algebra M (0,− 1/2;0,0) corresponds to the twisted Schrödinger-Virasoro algebra. The central extensions of our results are also explored. The physical implications and relevance of the deformed algebras introduced here are discussed along the work.
    URI
    http://repositoriodigital.ucsc.cl/handle/25022009/2178
    Ir a texto completo en URI:
    https://doi.org/10.1007/JHEP04(2020)073
    Collections
    • Artículos Científicos

    UCSC
    UCSC | Contact Us | Send Feedback
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    UCSC
    UCSC | Contact Us | Send Feedback