Show simple item record

dc.contributor.authorConcha Aguilera, Patrick
dc.contributor.authorSafari, H. R.
dc.date.accessioned2021-02-24T16:41:47Z
dc.date.available2021-02-24T16:41:47Z
dc.date.issued2020-04-14
dc.identifier.citationJournal of High Energy Physics, issue 4, April 2020, article number: 73es_CL
dc.identifier.issn1029-8479
dc.identifier.urihttp://repositoriodigital.ucsc.cl/handle/25022009/2178
dc.descriptionArtículo de publicación ISIes_CL
dc.description.abstractIn this work we present different infinite dimensional algebras which appear as deformations of the asymptotic symmetry of the three-dimensional Chern-Simons gravity for the Maxwell algebra. We study rigidity and stability of the infinite dimensional enhancement of the Maxwell algebra. In particular, we show that three copies of the Witt algebra and the bms3⊕witt algebra are obtained by deforming its ideal part. New family of infinite dimensional algebras are obtained by considering deformations of the other commutators which we have denoted as M (a, b; c, d) and M¯(α¯,β¯;ν¯). Interestingly, for the specific values a = c = d = 0,b = − 1/2 the obtained algebra M (0,− 1/2;0,0) corresponds to the twisted Schrödinger-Virasoro algebra. The central extensions of our results are also explored. The physical implications and relevance of the deformed algebras introduced here are discussed along the work.es_CL
dc.language.isoenes_CL
dc.publisherSpringeres_CL
dc.source.urihttps://doi.org/10.1007/JHEP04(2020)073
dc.subjectConformal and W symmetryes_CL
dc.subjectSpace-time symmetrieses_CL
dc.subjectGauge-gravity correspondencees_CL
dc.titleOn stabilization of Maxwell-BMS algebraes_CL
dc.typeArticlees_CL
dc.identifier.doi10.1007/JHEP04(2020)073


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record