Show simple item record

dc.contributor.authorAguayo Garrido, José
dc.contributor.authorNova, Miguel
dc.contributor.authorShamseddine, Khodr
dc.identifier.citationINDAGATIONES MATHEMATICAE 26es_CL
dc.descriptionArtículo de publicación ISI
dc.description.abstractLet C be the complex Levi-Civita field and let c0(C) or, simply, c0 denote the space of all null sequences z=(zn)n∈N of elements of C. The natural inner product on c0 induces the sup-norm of c0. In a previous paper Aguayo et al. (2013), we presented characterizations of normal projections, adjoint operators and compact operators on c0. In this paper, we work on some B∗-algebras of operators, including those mentioned above; then we define an inner product on such algebras and prove that this inner product induces the usual norm of operators. We finish the paper with a characterization of closed subspaces of the B∗-algebra of all adjoint and compact operators on c0 which admit normal complements.es_CL
dc.rightsAtribucion-Nocomercial-SinDerivadas 3.0 Chile
dc.subjectBanach spaces over non-Archimedean fieldses_CL
dc.subjectInner productses_CL
dc.subjectCompact operatorses_CL
dc.subjectSelf-adjoint operatorses_CL
dc.subjectPositive operatorses_CL
dc.titleInner product on B*-algebras of operators on a free Banach space over the Levi-Civita field.es_CL

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribucion-Nocomercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribucion-Nocomercial-SinDerivadas 3.0 Chile