• Login
    View Item 
    •   DSpace Home
    • A) Producción científica UCSC
    • Artículos Científicos
    • View Item
    •   DSpace Home
    • A) Producción científica UCSC
    • Artículos Científicos
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Single-leg mechanical performance and inter-leg asymmetries during bilateral countermovement jumps: A comparison of different calculation methods

    Thumbnail
    View/Open
    Single-leg mechanical performance and inter-leg asymmetries during.pdf (1.422Mb)
    Date
    2022
    Author
    Janicijevic, Danica
    Sarabon, Nejc
    Perez-Castilla, Alejandro
    Smajla, Darjan
    Fernández-Revelles, Andrés
    García-Ramos, Amador
    Publisher
    Gait & Posture
    Description
    Artículo de publicación WOS - SCOPUS
    Metadata
    Show full item record
    Abstract
    Background: The possibility to selectively assess the force exerted by each leg during bilateral jumps has allowed sport scientists to explore inter-leg asymmetries, this metric being a rich source of research due to its potential applications to improve sports performance and reduce the risk of injury. The purpose of this study was to explore the reliability and agreement of single-leg mechanical performance and inter-leg asymmetry variables obtained by two procedures of analysis (Synchronous [simultaneous jump detection for both legs] and Asyn- chronous [specific jump detection for each leg]) during bilateral countermovement jumps (CMJs). Method: During a single testing session, 74 participants performed 5 maximal height bilateral CMJs on dual force platforms (Kistler, model 9260AA6, Winterthur, Switzerland), and the 2 trials that differed the least in terms of squat depth and jump height were considered for statistical analyses. The following mechanical variables were calculated separately for each leg using the Synchronous and Asynchronous procedures: mean force, peak force, and propulsive impulse. Results: The procedures showed comparable reliability, except for mean force and propulsive impulse of the left leg (higher for the Asynchronous procedure). The agreement between the procedures was very high, while the most reliable mechanical variable was mean force (CV≈2.9%, ICC≈0.98), followed by peak force (CV≈4.4%, ICC≈0.96) and propulsive impulse (CV≈6.4%, ICC≈0.91). Reliability of inter-leg asymmetries was greater using mean and peak force (ICC range=0.74–0.82) than using propulsive impulse (ICC range = 0.65–0.66). Significance: Both Synchronous and Asynchronous procedures can be used to evaluate single-leg mechanical performance (mean force, peak force, and propulsive impulse) and asymmetries, whereas mean force should be used to evaluate single-leg mechanical performance and mean or peak force to assess asymmetries.
    URI
    http://repositoriodigital.ucsc.cl/handle/25022009/3031
    Collections
    • Artículos Científicos

    UCSC
    UCSC | Contact Us | Send Feedback
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    UCSC
    UCSC | Contact Us | Send Feedback