• Login
    View Item 
    •   DSpace Home
    • A) Producción científica UCSC
    • Artículos Científicos
    • View Item
    •   DSpace Home
    • A) Producción científica UCSC
    • Artículos Científicos
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Assessment of strength reduction factor on concrete moment frames according to the new Venezuelan seismic code

    Thumbnail
    View/Open
    Assessment of Strength Reduction Factor on Concrete Moment Frames According to the New Venezuelan Seismic Code.pdf (6.343Mb)
    Date
    2022
    Author
    Mata Lemus, Ramón
    Idrees Rustom, Ahmad
    Sánchez Rodríguez, Javier
    Torres Moreno, Ronald
    Nuñez Castellanos, Eduardo
    Bustamante Laissle, Guillermo
    Publisher
    MDPI
    Description
    Artículo de publicación WOS - SCOPUS
    Metadata
    Show full item record
    Abstract
    Nonlinear static analysis is a validated tool for the seismic evaluation of existing and new structures, specifically for reinforced concrete buildings. In order to assess the performance of reinforced concrete frames designed according to the new Venezuelan seismic code, configurations of low-, medium-, and high-rise concrete buildings are subjected to 20 different load patterns considering the nonlinear behavior according to FEMA P695. A total of 140 concrete frame models were analyzed using modal response spectrum analysis and nonlinear static pushover analysis. The parameters considered for analyzing the models were the response reduction factor (R), the overstrength factor (RΩ), and the ductility factor (Rµ). The results showed a performance controlled by ductile failure mechanisms in low-rise models unlike combined failure mechanisms with columns with plastic hinge in high-rise models. Reduction factor values between 4 and 14 were obtained. In addition, the pushover curves were affected by the load patterns; therefore, it was necessary to identify the representative patterns, refusing the rest of the patterns. A statistical adjustment was performed using a log-normal distribution. The strength reduction factor specified in the new Venezuelan code was higher than the values obtained for the 95% confidence levels according to the distribution assumed in the reinforced concrete frames models. Finally, the strength reduction factor more representative is R = 4.
    URI
    http://repositoriodigital.ucsc.cl/handle/25022009/3052
    Collections
    • Artículos Científicos

    UCSC
    UCSC | Contact Us | Send Feedback
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    UCSC
    UCSC | Contact Us | Send Feedback