• Login
    View Item 
    •   DSpace Home
    • A) Producción científica UCSC
    • Artículos Científicos
    • View Item
    •   DSpace Home
    • A) Producción científica UCSC
    • Artículos Científicos
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Tetrabutyl ammonium salts of keggin-type vanadium-substituted phosphomolybdates and phosphotungstates for selective aerobic catalytic oxidation of benzyl alcohol

    Thumbnail
    View/Open
    Tetrabutyl Ammonium Salts of Keggin-Type Vanadium-Substituted Phosphomolybdates.pdf (5.137Mb)
    Date
    2022
    Author
    Díaz, Juan
    Pizzio, Luis R.
    Pecchi, Gina
    Campos, Cristian H.
    Azócar Ulloa, Laura
    Briones, Rodrigo
    Romero, Romina
    Henríquez, Adolfo
    Gaigneaux, Eric M.
    Contreras, David
    Publisher
    MDPI
    Description
    Artículo de publicación WOS - SCOPUS
    Metadata
    Show full item record
    Abstract
    A series of tetrabutyl ammonium (TBA) salts of V-included Keggin-type polyoxoanions with W (TBA4PW11V1O40 and TBA5PW10V2O40) and Mo (TBA4PMo11V1O40 and TBA5PMo10V2O40) as addenda atoms were prepared using a hydrothermal method. These synthesized materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance (DRS UV-Vis), thermogravimetric analysis (TGA), CHN elemental analysis (EA), inductively coupled plasma spectrometry (ICP-MS), and N2 physisorption techniques to assess their physicochemical/textural properties and correlate them with their catalytic performances. According to FT-IR and DRS UV-Vis, (PVXW(Mo)12−XO40)(3+X)− anions are the main species present in the TBA salts. Additionally, CHN-EA and ICP-MS revealed that the desired stoichiometry was obtained. Their catalytic activities in the liquid-phase aerobic oxidation of benzyl alcohol to benzaldehyde were studied at 5 bar of O2 at 170 °C. Independently of the addenda atom nature, the catalytic activity increased with the number of V in the Keggin anion structure. For both series of catalysts, TBA salts of polyoxometalates with the highest V-substitution degree (TBA5PMo10V2O40 and TBA5PW10V2O40) showed higher activity. The maximum benzyl alcohol conversions obtained were 93% and 97% using (TBA)5PMo10V2O40 and (TBA)5PW10V2O40 as catalysts, respectively. In all the cases, the selectivity toward benzaldehyde was higher than 99%.
    URI
    http://repositoriodigital.ucsc.cl/handle/25022009/3069
    Collections
    • Artículos Científicos

    UCSC
    UCSC | Contact Us | Send Feedback
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    UCSC
    UCSC | Contact Us | Send Feedback