Non-Archimedean Hilbert like spaces

View/ Open
Date
2007Author
Nova, Miguel
Aguayo Garrido, José
Publisher
Project EuclidDescription
Metadata
Show full item recordAbstract
Let K be a non-Archimedean, complete valued field. It is known that the supremum norm ∥⋅∥∞ on c0 is induced by an inner product if and only if the residual class field of K is formally real. One of the main problems of this inner product is that c0 is not orthomodular, as is any classical Hilbert space. Our goal in this work is to identify those closed subspaces of c0 which have a normal complement. In this study we also involve projections, adjoint and self-adjoint operators.