Show simple item record

dc.contributor.authorUribe, Marco
dc.contributor.authorWallace, Myrna
dc.date.accessioned2015-12-09T17:21:45Z
dc.date.available2015-12-09T17:21:45Z
dc.date.issued2000
dc.identifier.citationProyecciones 19es_CL
dc.identifier.issn0716-0917
dc.identifier.urihttp://repositoriodigital.ucsc.cl/handle/25022009/737
dc.descriptionArtículo de publicación SCIELO
dc.description.abstractIn this paper we consider the family of quadratic Kolmogoroff systems with a center in the real quadrant: (:x=x(1ÄxÄay):y=y(Ä1 +ax+y), where 1< a <1: This system has three invariant lines (the coordinate axes and the line x+yÄ1 = 0) and a family of periodic solutions nested around a center and filling out the triangle determined by the three invariant lines. Using integrability of this system we reduce the abelian integral representing the period function and its derivative. The main result is that the corresponding period function is monotone increasing for values of the parameter near a = 3es_CL
dc.language.isoenes_CL
dc.publisherScieloes_CL
dc.rightsAtribucion-Nocomercial-SinDerivadas 3.0 Chile
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.source.urihttp://goo.gl/iVVnmI
dc.subjectKolmogoroffes_CL
dc.titleThe period function in a class of quadratic kolmogoroff systems.es_CL
dc.typeArticlees_CL


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribucion-Nocomercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribucion-Nocomercial-SinDerivadas 3.0 Chile