Gain of regularity for an nonlinear dispersive equation korteweg - de vries-burgers type
Fecha
2000Autor
Vera, Octavio
Editor
ScieloDescripción
Artículo de publicación SCIELOMetadatos
Mostrar el registro completo del ítemResumen
In this papers we study smoothness properties of solutions. We consider the equation of Korteweg - de Vries - Burgers type:(1)öut+@xf(u)=è @2xuÄé @3xu(x;0) ='(x) with Ä1< x <+1andt >0: The flux f=f(u)is a given
smooth function satisfying certain assumptions to be listed shortly. It is shown under certain additional conditions on f that C1- solutions u(x; t) are obtained for all t >0 if the initial data u(x;0) ='(x) decays faster than polinomially on IR +=fx2IR;x 0 and has certain initial Sobolev regularity.