Show simple item record

dc.contributor.authorVera, Octavio
dc.date.accessioned2015-12-09T17:49:02Z
dc.date.available2015-12-09T17:49:02Z
dc.date.issued2000
dc.identifier.citationProyecciones 19es_CL
dc.identifier.issn0716-0917
dc.identifier.urihttp://repositoriodigital.ucsc.cl/handle/25022009/738
dc.descriptionArtículo de publicación SCIELO
dc.description.abstractIn this papers we study smoothness properties of solutions. We consider the equation of Korteweg - de Vries - Burgers type:(1)öut+@xf(u)=è @2xuÄé @3xu(x;0) ='(x) with Ä1< x <+1andt >0: The flux f=f(u)is a given smooth function satisfying certain assumptions to be listed shortly. It is shown under certain additional conditions on f that C1- solutions u(x; t) are obtained for all t >0 if the initial data u(x;0) ='(x) decays faster than polinomially on IR +=fx2IR;x 0 and has certain initial Sobolev regularity.es_CL
dc.language.isoenes_CL
dc.publisherScieloes_CL
dc.rightsAtribucion-Nocomercial-SinDerivadas 3.0 Chile
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.source.urihttp://goo.gl/jpY96U
dc.subjectEvolution equationses_CL
dc.subjectLionses_CL
dc.subjectWeighted Sobolev Spacees_CL
dc.subjectAubin Theoremes_CL
dc.titleGain of regularity for an nonlinear dispersive equation korteweg - de vries-burgers typees_CL
dc.typeArticlees_CL


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribucion-Nocomercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribucion-Nocomercial-SinDerivadas 3.0 Chile