Gain of regularity for an nonlinear dispersive equation korteweg - de vries-burgers type
dc.contributor.author | Vera, Octavio | |
dc.date.accessioned | 2015-12-09T17:49:02Z | |
dc.date.available | 2015-12-09T17:49:02Z | |
dc.date.issued | 2000 | |
dc.identifier.citation | Proyecciones 19 | es_CL |
dc.identifier.issn | 0716-0917 | |
dc.identifier.uri | http://repositoriodigital.ucsc.cl/handle/25022009/738 | |
dc.description | Artículo de publicación SCIELO | |
dc.description.abstract | In this papers we study smoothness properties of solutions. We consider the equation of Korteweg - de Vries - Burgers type:(1)öut+@xf(u)=è @2xuÄé @3xu(x;0) ='(x) with Ä1< x <+1andt >0: The flux f=f(u)is a given smooth function satisfying certain assumptions to be listed shortly. It is shown under certain additional conditions on f that C1- solutions u(x; t) are obtained for all t >0 if the initial data u(x;0) ='(x) decays faster than polinomially on IR +=fx2IR;x 0 and has certain initial Sobolev regularity. | es_CL |
dc.language.iso | en | es_CL |
dc.publisher | Scielo | es_CL |
dc.rights | Atribucion-Nocomercial-SinDerivadas 3.0 Chile | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.source.uri | http://goo.gl/jpY96U | |
dc.subject | Evolution equations | es_CL |
dc.subject | Lions | es_CL |
dc.subject | Weighted Sobolev Space | es_CL |
dc.subject | Aubin Theorem | es_CL |
dc.title | Gain of regularity for an nonlinear dispersive equation korteweg - de vries-burgers type | es_CL |
dc.type | Article | es_CL |