Research Outputs

Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Insights into the visible light photocatalytic activity of S-doped hydrated TiO2

2019, Vorontsov, Alexander V., Valdes-Morales, Hector

Cationic doping of TiO2 anatase with sulphur represents a facile method to improve catalytic and photocatalytic activity for hydrogen production and extend the action spectrum of TiO2 into the visible light region. However, there is a lot of misunderstanding when trying to explain the experimental findings and suggest theoretical models. In the present computational research work, novel theoretical models are put forward representing fully hydroxylated small anatase nanoparticles with S(IV) and S(VI) doping in various surface positions and in the bulk. It was found that sulfur in the doped anatase nanoparticles preserves its typical coordination geometries of trigonal pyramid for S(IV) and tetrahedron for S(VI). Doping in the anatase surface is much more energetically favorable compared to doping in the bulk. Doping with S(IV) causes decrease of the band gap from 3.22 to 2.65 eV while S(VI) doping could decrease Eg only to 2.96 eV. Location of photogenerated electrons and holes depends strongly on the position of dopant atoms and their valent state. Contrary to some experimental works, no strong and extended visible light absorption bands could be found with cationic doped hydroxylated anatase nanoparticles. However, improved charges separation is observed indeed and causes improved photocatalytic hydrogen production.

No Thumbnail Available
Publication

Quantum size effect and visible light activity of anatase nanosheet quantum dots

2019, Vorontsov, Alexander V., Valdes-Morales, Hector

Anatase (001)nanosheets have recently attracted great attention as very active catalysts and photocatalysts. These graphene analogs have very high surface area and unique surface properties. In the present paper, very thin two-layer anatase nanosheets are investigated computationally in the form of quantum dots of various size. Quantum size effect (QSE)was clearly observed for nanosheets with fully hydroxylated edges and size up to 14 nm and the ultimate band gap is around 3.4 eV. Dehydroxylation of nanosheets obscured QSE, decreased band gap and induced visible light absorption. Therefore, contradictory trends reported in experimental studies for anatase QSE can be ascribed to different degree of hydroxylation of the TiO 2 samples surface. All anatase nanosheet quantum dots retained their flat graphene-like shape. These findings demonstrate that dehydroxylated anatase nanosheet quantum dots are prospective visible-light active photocatalysts even if their inherent band gap is considerably larger than for bulk anatase.

No Thumbnail Available
Publication

Oxygen vacancies in nano-sized TiO2 anatase nanoparticles

2019, Drozd, Valeriya S., Zybina, Nadezhda A., Abramova, Kristina E., Parfenov, Mikhail Yu, Kumar, Umesh, Valdes-Morales, Hector, Smirniotis, Panagiotis G., Vorontsov, Alexander V.

Anatase nanoparticles containing surface oxygen vacancies (VO) and Ti3+ are of great importance for applications in photocatalysis, batteries, catalysis, sensors among other uses. The properties of VO and their dependence on the size of nanoparticles are of great research interest and could allow obtaining advanced functional materials. In this work, a complete set of oxygen vacancies in an anatase nanoparticle of size 1.1 nm was investigated and compared to those of a twice larger nanoparticle, having the same shape and surface hydroxylation pattern. It turned out that the decrease in the size of the anatase nanoparticle strongly facilitated creation of surface oxygen vacancies and Ti3+. After their creation, oxygen vacancies undergo three transformation paths — (1) small repulsion of surrounding Ti cations with retention of the vacancy, (2) transfer of oxygen anion, leading to the movement of oxygen vacancy to a more stable position, and (3) collapse of oxygen vacancy accompanied by structure deformation towards Magneli-like phase.