Research Outputs

Now showing 1 - 2 of 2
  • Publication
    Application of microbe-induced carbonate precipitation for copper removal from copper-enriched waters: Challenges to future industrial application
    (Journal of Environmental Management, 2020)
    Duarte-Nass, Carla
    ;
    Rebolledo, Katherina
    ;
    Valenzuela, Tamara
    ;
    Kopp, Matías
    ;
    Jeison, David
    ;
    Rivas, Mariella
    ;
    ;
    Torres-Aravena, Álvaro
    ;
    Ciudad, Gustavo
    Copper contamination in watercourses is a recent issue in countries where mining operations are prevalent. In this study, the application of copper precipitation through microbe-induced carbonate precipitation (MICP) was analyzed using urea hydrolysis by bacteria to evaluate precipitated copper carbonates. This article demonstrates the application of a copper precipitation assay involving Sporosarcina pasteurii (in 0.5 mM Cu2þ and 333 mM urea) and analyzes the resultant low removal (10%). The analysis indicates that the low removal was a consequence of Cu2þ complexation with the ammonia resulting from the hydrolysis of urea. However, the results indicate that there should be a positive correlation between the initial urea concentration and the bacterial tolerance to copper. This identifies a challenge in the industrial application of the process, wherein a minimum consumption of urea represents an economic advantage. Therefore, it is necessary to design a sequential process that decouples bacterial growth and copper precipitation, thereby decreasing the urea requirement.
  • Thumbnail Image
    Publication
    Testing the Capacity of Staphylococcus Equorum for Calcium and Copper Removal through MICP process
    (minerals, 2021)
    Sepúlveda, Sebastián
    ;
    Duarte-Nass, Carla
    ;
    Rivas, Mariella
    ;
    ;
    Ramírez, Andrés
    ;
    Toledo-Alarcón, Javiera
    ;
    Gutiérrez, Leopoldo
    ;
    Jeison, David
    ;
    Torres Aravena, Álvaro
    This research focused on the evaluation of the potential use of a soil-isolated bacteria, identified as Staphylococcus equorum, for microbial-induced calcite precipitation (MICP) and copper removal. Isolated bacteria were characterized considering growth rate, urease activity, calcium carbonate precipitation, copper tolerance as minimum inhibitory concentration (MIC) and copper precipitation. Results were compared with Sporosarcina pasteurii, which is considered a model bacteria strain for MICP processes. The results indicated that the S. equorum strain had lower urease activity, calcium removal capacity and copper tolerance than the S. pasteurii strain. However, the culture conditions tested in this study did not consider the halophilic feature of the S. equorum, which could make it a promising bacterial strain to be applied in process water from mining operations when seawater is used as process water. On the other hand, copper removal was insufficient when applying any of the bacteria strains evaluated, most likely due to the formation of a copper–ammonia complex. Thus, the implementation of S. equorum for copper removal needs to be further studied, considering the optimization of culture conditions, which may promote better performance when considering calcium, copper or other metals precipitation.