Research Outputs

Now showing 1 - 2 of 2
No Thumbnail Available
Publication

L-NIL prevents the ischemia and reperfusion injury involving TRL4, GST, clusterin and NFAT5 in mice

2019, Pasten, María, Alvarado-Livacic, Cristobal, Rocco, Jocelyn, Contreras, Luis, Aracena, Paula, Liberona, Jéssica, Suazo, Cristian, Michea, Luis, Irarrázabal, Carlos E.

On renal ischemia-reperfusion (I/R) injury, recruitment of neutrophils during the inflammatory process promotes local generation of oxygen and nitrogen reactive species, which, in turn, are likely to exacerbate tissue damage. The mechanism by which inducible nitric oxide synthase (iNOS) is involved in I/R has not been elucidated. In this work, the selective iNOS inhibitor l- N6-(1-iminoethyl)lysine (l-NIL) and the NOS substrate l-arginine were employed to understand the role of NOS activity on the expression of particular target genes and the oxidative stress elicited after a 30-min of bilateral renal ischemia, followed by 48-h reperfusion in Balb/c mice. The main findings of the present study were that pharmacological inhibition of iNOS with l-NIL during an I/R challenge of mice kidney decreased renal injury, prevented tissue loss of integrity, and improved renal function. Several novel findings regarding the molecular mechanism by which iNOS inhibition led to these protective effects are as follows: 1) a prevention of the I/R-related increase in expression of Toll-like receptor 4 (TLR-4), and its downstream target, IL-1β; 2) reduced oxidative stress following the I/R challenge; noteworthy, this study shows the first evidence of glutathione S-transferase (GST) inactivation following kidney I/R, a phenomenon fully prevented by iNOS inhibition; 3) increased expression of clusterin, a survival autophagy component; and 4) increased expression of nuclear factor of activated T cells 5 (NFAT-5) and its target gene aquaporin-1. In conclusion, prevention of renal damage following I/R by the pharmacological inhibition of iNOS with l-NIL was associated with the inactivation of proinflammatory pathway triggered by TLR-4, oxidative stress, renoprotection (autophagy inactivation), and NFAT-5 signaling pathway.

Thumbnail Image
Publication

Aminoguanidine prevents the oxidative stress, inhibiting elements of inflammation, endothelial activation, mesenchymal markers, and confers a renoprotective effect in renal ischemia and reperfusion injury

2021, Pasten, Consuelo, Lozano, Mauricio, Rocco, Jocelyn, Carrión, Flavio, Alvarado-Livacic, Cristobal, Liberona, Jéssica, Michea, Luis, Irarrázabal, Carlos

Oxidative stress produces macromolecules dysfunction and cellular damage. Renal ischemia-reperfusion injury (IRI) induces oxidative stress, inflammation, epithelium and endothelium damage, and cessation of renal function. The IRI is an inevitable process during kidney transplantation. Preliminary studies suggest that aminoguanidine (AG) is an antioxidant compound. In this study, we investigated the antioxidant effects of AG (50 mg/kg, intraperitoneal) and its association with molecular pathways activated by IRI (30 min/48 h) in the kidney. The antioxidant effect of AG was studied measuring GSSH/GSSG ratio, GST activity, lipoperoxidation, iNOS, and Hsp27 levels. In addition, we examined the effect of AG on elements associated with cell survival, inflammation, endothelium, and mesenchymal transition during IRI. AG prevented lipid peroxidation, increased GSH levels, and recovered the GST activity impaired by IRI. AG was associated with inhibition of iNOS, Hsp27, endothelial activation (VE-cadherin, PECAM), mesenchymal markers (vimentin, fascin, and HSP47), and inflammation (IL-1β, IL-6, Foxp3, and IL-10) upregulation. In addition, AG reduced kidney injury (NGAL, clusterin, Arg-2, and TFG-β1) and improved kidney function (glomerular filtration rate) during IRI. In conclusion, we found new evidence of the antioxidant properties of AG as a renoprotective compound during IRI. Therefore, AG is a promising compound to treat the deleterious effect of renal IRI.