Research Outputs

Now showing 1 - 4 of 4
No Thumbnail Available
Publication

Non-indigenous species contribute equally to biofouling communities in international vs local ports in the Biobío region, Chile

2018, Leclerc, Jean-Charles, Viard, Frédérique, Gonzalez-Sepulveda, Elizabeth, Diaz-Peralta, Christian, Neira Hinojosa, José, Pérez Araneda, Claudia, Silva, Francisco, Brante-Ramirez, Antonio

Growing coastal urbanization together with the intensification of maritime traffic are major processes explaining the increasing rate of biological introductions in marine environments. To investigate the link between international maritime traffic and the establishment of non-indigenous species (NIS) in coastal areas, biofouling communities in three international and three nearby local ports along 100 km of coastline in south-central Chile were compared using settlement panels and rapid assessment surveys. A larger number of NIS was observed in international ports, as expected in these ‘invasion hubs’. However, despite a few environmental differences between international and local ports, the two port categories did not display significant differences regarding NIS establishment and contribution to community structure over the studied period (1.5 years). In international ports, the free space could be a limiting factor for NIS establishment. The results also suggest that local ports should be considered in NIS surveillance programs in Chile.

Thumbnail Image
Publication

Presence of the tunicate Asterocarpa humilis on ship hulls and aquaculture facilities in the coast of the Biobio Region, south central Chile

2017, Dr. Brante-Ramirez, Antonio, Mg. Diaz-Peralta, Christian, Pinochet, Javier, Dra. Tellier, Florence, Jean-Charles, Leclerc, Daguin-Thiébaut, Claire, Frédérique,Viard

Non-native ascidians are important members of the fouling community associated with artificial substrata and man-made structures. Being efficient fouling species, they are easily spread by human-mediated transports (e.g., with aquaculture trade and maritime transports). This is exemplified by the ascidian Asterocarpa humilis which displays a wide distribution in the Southern Hemisphere and has been recently reported in the Northern Hemisphere (NW Europe). In continental Chile, its first report dates back from 2000 for the locality of Antofagasta (23_x000E_S). Although there was no evidence about the vectors of introduction and spread, nor the source, some authors suggested maritime transport by ship hulls and aquaculture devices as putative introduction pathways and vectors. In the present study, we report for the first time the presence of A. humilis on the hull of an international ship in a commercial port in Concepción bay (36_x000E_S), south central Chile. We also found one individual associated to a seashell farm, 70 km far from Concepción bay. Further individuals were subsequently identified within Concepción bay: one juvenile settled upon international harbor pilings and a dozen individuals along aquaculture seashell longlines. For the first specimens sampled, species identification was ascertained using both morphological criteria and molecular barcoding, using the mitochondrial gene cytochrome c oxidase subunit I (COI) and a nuclear gene (ribosomal RNA 18S). The nuclear 18S gene and the mitochondrial gene COI clearly assigned the specimens to A. humilis, confirming our morphological identification. Two haplotypes were obtained with COI corresponding to haplotypes previously obtained with European and Northern Chilean specimens. The present study thus reports for the first time the presence of A. humilis in the Araucanian ecoregion, documenting the apparent expansion of this non-native tunicate in Chile over 2,000 km, spanning over three ecoregions. In addition we reveal the potential implication of the international maritime transport as a vector of spread of this species along the Eastern Pacific coast, and the putative role of aquaculture facilities in promoting local establishments of non-native tunicates.

No Thumbnail Available
Publication

Characterization of Baker Fjord region through its heavy metal content on sediments (Central Chilean Patagonia)

2015, Ahumada, Ramón, Gonzalez-Sepulveda, Elizabeth, Diaz-Peralta, Christian, Silva, Nelson

The spatial distribution of heavy metals content (Ba, Cd, Cu, Pb, Sr and Zn) in sediments of the Baker Fjord and surrounding channels in the central region of the Chilean fjords (47°45'S, 48°15'S) is analyzed. The aim of the study was characterized the patterns of abundance and distribution of these metals in surface sediments. The area corresponds to a poorly studied zone with low human activity. Distribution patterns would be influenced by rainfall conditions (local erosion), fluvial (continental sediments carried by rivers), glacier (glacier flour) and estuarine circulation. Cluster analysis allows differentiation among the sampled sites and group with similar characteristics. Finally, the concentrations found were contrasted with average values of metamorphic rocks and show with some certainty that the values found for calendar for this area and the greatest concentrations are the result of natural enrichment.

Thumbnail Image
Publication

Habitat type drives the distribution of non-indigenous species in fouling communities regardless of associated maritime traffic

2020, Dr. Brante-Ramirez, Antonio, Mg. Gonzalez-Sepulveda, Elizabeth, Mg. Diaz-Peralta, Christian

Biological invasions and changes in land and sea use are among the five major causes of global biodiversity decline. Shipping and ocean sprawl (multiplication of artificial structures at the expense of natural habitats) are considered as the major forces responsible for marine invasions and biotic homogenization. And yet, there is little evidence of their interplay at multiple spatial scales. Here, we aimed to examine this interaction and the extent to which the type of artificial habitat alters the distribution of native and non‐indigenous biodiversity. Location: Southeast Pacific—Central Chilean coastline.