Show simple item record

dc.contributor.authorBarrios Faúndez, Tomás
dc.contributor.authorBehrens, Edwin
dc.contributor.authorGonzález, María
dc.date.accessioned2020-06-06T00:26:41Z
dc.date.available2020-06-06T00:26:41Z
dc.date.issued2019-08
dc.identifier.citationInternational Journal of Numerical Analysis and Modeling, Volume 16, Issue 5, Pages: 804-824es_CL
dc.identifier.issn1705-5105
dc.identifier.urihttp://repositoriodigital.ucsc.cl/handle/25022009/1784
dc.descriptionArtículo de publicación Web of Sciencees_CL
dc.description.abstractWe consider the augmented mixed finite element method introduced in [7] for the equations of plane linear elasticity with mixed boundary conditions. We develop an a posteriori error analysis based on the Ritz projection of the error and obtain an a posteriori error estimator that is reliable and efficient, but that involves a non-local term. Then, introducing an auxiliary function, we derive fully local reliable a posteriori error estimates that are locally efficient up to the elements that touch the Neumann boundary. We provide numerical experiments that illustrate the performance of the corresponding adaptive algorithm and support its use in practice.es_CL
dc.language.isoenes_CL
dc.publisherInternational Journal of Numerical Analysis and Modelinges_CL
dc.source.urihttps://www.global-sci.org/intro/article_detail/ijnam/13255.html
dc.subjectA posteriori error estimateses_CL
dc.subjectMixed nite elementes_CL
dc.subjectAugmented formulationes_CL
dc.subjectLinear elasticityes_CL
dc.subjectRitz projectiones_CL
dc.titleA posteriori error analysis of an augmented dual-mixed method in linear elasticity with mixed boundary conditionses_CL
dc.typeArticlees_CL


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record