Show simple item record

dc.contributor.authorBarrios Faúndez, Tomás
dc.contributor.authorBustinza, Rommel
dc.contributor.authorGarcía, Galina C.
dc.contributor.authorGonzález, María
dc.date.accessioned2020-06-06T04:09:18Z
dc.date.available2020-06-06T04:09:18Z
dc.date.issued2019-03-05
dc.identifier.citationJournal of Computational and Applied Mathematics, Volume 357, September 2019, Pages: 349-365es_CL
dc.identifier.urihttp://repositoriodigital.ucsc.cl/handle/25022009/1789
dc.descriptionArtículo de publicación SCOPUSes_CL
dc.description.abstractWe consider a stabilized mixed finite element method introduced recently for the generalized Stokes problem. The method is obtained by adding suitable least squares terms to the dual-mixed variational formulation of the problem in terms of the velocity and the pseudostress. We obtain a new a posteriori error estimator of residual type and prove that it is reliable and locally efficient. Specifically, we develop an a posteriori error analysis based on the quasi-Helmholtz decomposition which allows us to prove the so-called local efficiency of the estimator with a non-homogeneous boundary condition. Finally, we present some numerical examples that confirm the theoretical properties of our approach.es_CL
dc.language.isoenes_CL
dc.publisherJournal of Computational and Applied Mathematicses_CL
dc.source.urihttps://doi.org/10.1016/j.cam.2019.02.019
dc.subjectGeneralized Stokes problemes_CL
dc.subjectBrinkman problemes_CL
dc.subjectVelocity–pseudostresses_CL
dc.subjectFormulationes_CL
dc.subjectA posteriori error estimateses_CL
dc.titleAn a posteriori error analysis of a velocity-pseudostress formulation of the generalized Stokes problemes_CL
dc.typeArticlees_CL


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record