• Login
    View Item 
    •   DSpace Home
    • A) Producción científica UCSC
    • Artículos Científicos
    • View Item
    •   DSpace Home
    • A) Producción científica UCSC
    • Artículos Científicos
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Leaf wax composition and distribution of Tillandsia landbeckii refects moisture gradient across the hyperarid Atacama Desert

    Thumbnail
    View/Open
    Leaf wax composition and distribution of Tillandsia landbeckii reflects moisture gradient across the hyperarid Atacama Desert.pdf (1.535Mb)
    Date
    2022
    Author
    Contreras, Sergio
    Landahur, Manlio
    García, Karla
    Latorre, Claudio
    Reyers, Mark
    Rethemeyer, Janet
    Jaeschke, Andrea
    Publisher
    Plant Systematics and Evolution
    Description
    Artículo de publicación WOS - SCOPUS
    Metadata
    Show full item record
    Abstract
    In the hyperarid Atacama Desert, water availability plays a crucial role in allowing plant survival. Along with scant rainfall, marine advective fog frequently occurs along the coastal escarpment fueling isolated mono-specifc patches of Tillandsia vegetation. In this study, we investigate the lipid biomarker composition of the bromeliad Tillandsia landbeckii (CAM plant) to assess structural adaptations at the molecular level as a response to extremely arid conditions. We analyzed long-chain n-alkanes and fatty acids in living specimens (n=59) collected from the main Tillandsia dune ecosystems across a 350 km coastal transect. We found that the leaf wax composition was dominated by n-alkanes with concentrations (total average 160.8±91.4 µg/g) up to three times higher than fatty acids (66.7±40.7 µg/g), likely as an adaptation to the hyperarid environment. Signifcant diferences were found in leaf wax distribution (Average Chain Length [ACL] and Carbon Preference Index [CPI]) in the northern zone relative to the central and southern zones. We found strong negative correlations between fatty acid CPI and n-alkane ACL with precipitation and surface evaporation pointing at fne-scale adaptations to low moisture availability along the coastal transect. Moreover, our data indicate that the predominance of n-alkanes is refecting the function of the wax in preventing water loss from the leaves. The hyperarid conditions and good preservation potential of both n-alkanes and fatty acids make them ideal tracers to study late Holocene climate change in the Atacama Desert.
    URI
    http://repositoriodigital.ucsc.cl/handle/25022009/2947
    Collections
    • Artículos Científicos

    UCSC
    UCSC | Contact Us | Send Feedback
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    UCSC
    UCSC | Contact Us | Send Feedback