dc.contributor.author | Flores-Bazán, Fabián | |
dc.contributor.author | Flores-Bazán, Fernando | |
dc.contributor.author | Vera, Cristian | |
dc.date.accessioned | 2015-11-24T18:22:22Z | |
dc.date.available | 2015-11-24T18:22:22Z | |
dc.date.issued | 2012 | |
dc.identifier.citation | Journal of Global Optimization 53 | es_CL |
dc.identifier.issn | 1573-2916 | |
dc.identifier.uri | http://repositoriodigital.ucsc.cl/handle/25022009/482 | |
dc.description | Artículo de publicación ISI | |
dc.description.abstract | We first establish sufficient conditions ensuring strong duality for cone constrained nonconvex optimization problems under a generalized Slater-type condition. Such conditions allow us to cover situations where recent results cannot be applied. Afterwards, we provide a new complete characterization of strong duality for a problem with a single constraint: showing, in particular, that strong duality still holds without the standard Slater condition. This yields Lagrange multipliers characterizations of global optimality in case of (not necessarily convex) quadratic homogeneous functions after applying a generalized joint-range convexity result. Furthermore, a result which reduces a constrained minimization problem into one with a single constraint under generalized convexity assumptions, is also presented. | es_CL |
dc.language.iso | en | es_CL |
dc.publisher | Springer | es_CL |
dc.rights | Atribucion-Nocomercial-SinDerivadas 3.0 Chile | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.source.uri | http://goo.gl/0CfPTS | |
dc.subject | Strong duality | es_CL |
dc.subject | nonconvex optimization | es_CL |
dc.title | A complete characterization of strong duality in nonconvex optimization with a single constraint | es_CL |
dc.type | Article | es_CL |